Dextran grafted nickel-doped superparamagnetic iron oxide nanoparticles: Electrochemical synthesis and characterization

Authors

  • Isa Karimzadeh Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • Mohammad Reza Ganjali Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran | Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
  • Mustafa Aghazadeh Materials and Nuclear Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
Abstract:

In this paper, polymer grafted nickel-doped iron oxide nanoparticles are fabricated via an easy, one-step and fast electrochemical procedure. In the deposition experiments, iron(II) chloride hexahydrate, iron(III) nitrate nonahydrate, nickel chloride hexahydrate, and dextran were used as the bath composition. Dextran grafted nickel-doped iron oxides (DEX/Ni-SPIOs) were synthesized with applying direct current (dc) of 10 mA cm–2. The magnetite crystal phase, nano-size, Ni doped content, and dextran grafting onto SPIOs were verified through X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses. Magnetic evaluation through vibrating-sample magnetometer (VSM) proved that the DEX/Ni-SPIOs product have superparamagnetic behavior with exhibiting the high saturation magnetization and negligible Ms and Hci values. Based on the obtained results, it was confirmed that the prepared dextran grafted Ni-SPIOs have suitable physico-chemical and magnetic properties for both therapeutic and diagnostic aims.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications

Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...

full text

Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications

Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...

full text

Synthesis and characterization of superparamagnetic Iron Oxide nanoparticles (SPIONs) stabilized by Glucose, Fructose and Sucrose

The aim of this study is to obtain polysaccharide (Glucose, Fructose and Sucrose) stabilized superparamagnetic iron oxide nanoparticles (SPIONs) by Co-Precipitation method. As prepared iron oxide nanoparticles have been characterized by X-ray Diffraction (XRD), Fourier Transform infrared (FTIR) spectroscopy, UV–Vis NIR spectroscopy, High Resolution Transmission Electron Microscope (HRTEM) and V...

full text

PVA and EDTA grafted superparamagnetic Ni doped iron oxide nanoparticles prepared by constant current electrodeposition for biomedical applications

In this paper, a rapid and room temperature electrochemical method is introduced in preparationof Ni doped iron oxide nanoparticles (Ni-IONs) grafted with ethylenediaminetetraacetic acid (EDTA)and polyvinyl alcohol (PVA). EDTA/Ni-IONs and PVA/Ni-IONs samples were prepared through baseelectro-generation on the cathode surface from aqueous solution of iron(II) chloride, iron(III...

full text

Synthesis and characterization of superparamagnetic Iron Oxide nanoparticles (SPIONs) stabilized by Glucose, Fructose and Sucrose

The aim of this study is to obtain polysaccharide (Glucose, Fructose and Sucrose) stabilized superparamagnetic iron oxide nanoparticles (SPIONs) by Co-Precipitation method. As prepared iron oxide nanoparticles have been characterized by X-ray Diffraction (XRD), Fourier Transform infrared (FTIR) spectroscopy, UV–Vis NIR spectroscopy, High Resolution Transmission Electron Microscope (HRTEM) and V...

full text

Synthesis and Characterization of Holmium-Doped Iron Oxide Nanoparticles

Rare earth atoms exhibit several interesting properties, for example, large magnetic moments and luminescence. Introducing these atoms into a different matrix can lead to a material that shows multiple interesting effects. Holmium atoms were incorporated into an iron oxide nanoparticle and the concentration of the dopant atom was changed in order to determine its influence on the host crystal. ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 3

pages  531- 538

publication date 2019-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023